
An Architecture for Using Tertiary
Storage in a Data Warehouse

Theodore Johnson

Database Research Dept.

AT&T Labs - Research

johnsont@research.att.com

Motivation

• AT&T has huge data warehouses.
– Data from billing, operations, network operations, etc.

– In the form of billions of small objects (50 bytes)

– Complex “decision support” and data mining queries.

• Very large data sets are difficult to store on-line
– Cost of purchase

– Cost of maintenance.

• Tape-resident data is difficult to query
– Data is exported from databases - interface mismatch.

– Tape management software does not support analyses
• Aggregation queries over multi-terabyte data sets.

“Decision Support” Queries

• Summarize large collections of data (aggregation).
– Multiple levels of aggregation

– Multiple dimensions of aggregation

– “Data cubes”

• Use the aggregates for comparisons
– “What fraction of total sales are made in California, by

week, during 1996?”

– “What fraction of total 1996 sales made in California
are made in Orange County on Mondays?”

– “Show the yearly/monthly/hourly volume of telephone
traffic between pairs of area codes.”

More complex queries
• “Complex” aggregation

– “For each connection, count the number of packets exchanged
between call setup and teardown”

– “For each customer, what is the most common destination of calls
with above-average length.”

– “Which stores are favored by customers that make large
purchases?”

• Data mining queries
– Association rules (which objects tend to appear together)

– Multidimensional distribution analysis (is it changing?)

– Decision trees, etc.

• Needle-in-the-haystack
– List all calls made to or from 212-555-4321 during the last 5 years.

Tape-resident data warehouses
• Detail data : Finest granularity

information.

• Summaries : Precomputed
aggregate tables.

• Summaries and the head of the
detail data is on-line.

• Tail of detail data is on tape.

• Use disk-resident data
whenever possible to answer
ad-hoc queries.

• Query tape-resident data when
necessary.

• The detail data sets are a few
multi-terabyte detail data tables.

• Queries on tape resident data
frequently range over terabytes.

detail data

disk resident tape resident

summaries
and cubes

robotic storage library

Challenges

• Existing DBMSs do not integrate well with tertiary storage
– Tape storage is inherently sequential.

– Conventional DBMS query evaluation algorithms require random
access.

• “Cross-product” joins

• Management of very large collections of small objects
presents storage problems
– Indices may be too large to store on-line.

• Existing tape management software not appropriate
– Terabyte scale, data intensive queries

– Control over data layout.

– Control over scheduling.

create view Temp as
 select R.Source, R.Dest, R.ts, EndTime=min(S.ts)
 from Pkt R, Pkt S
 where R.Source=S.Source AND R.Dest=S.Dest AND
 R.ts <= S.ts AND R.StartCall=1 and S.EndCall=1
 group by R.Source, R.Dest, R.ts

select T.Source, T.Dest, T.ts, count(*) from Pkt R, Temp T
where R.Source=T.Source AND R.Dest=T.Dest AND
 R.ts>=T.ts and R.ts<=T.EndTime
group by T.Source, T.Dest, T.ts

Pkt(Source, Dest, ts, StartCall, EndCall)

Decision support queries on tape data

• Our target is large-scale aggregation queries
– Usually, we want to build a new summary table.

• We can’t predict every query in advance.

• Similar problems occur with scientific data sets.

• Long sequential scans
– Aggregation queries over the entire data set.

• Or dense subsets.

– Small “dimension tables” stored on disk.

– Multiple passes for complex aggregation.

• Temporal nature of warehouse data permits localization.
– Many optimizations are possible to reduce memory use.

– Joins are localized -- “cross product” is rare.

Requirements
• High sequential throughput

– Parallel I/O
• Partition data set, perform concurrent reads.

– Parallel processing
• CPU use is still a consideration

– Lightweight architecture
• Transactions are done somewhere else.

– Tape to memory transfers
• Caching does not help a sequential scan through a terabyte.

• Database features
– Control over data layout

– Indexing

– Declarative access
• Enable parallel access and scheduling

– Access methods for decision support queries

Target System

• High end server
– O(1 Gbyte) of main memory

– O(1 Tbyte) on-line storage

– O(10) processors

• Moderate to large size robotic storage library
– Tape storage

– 10 to 100 Mbyte/sec aggregate transfer rate.

Ingest
• Move detail data from disk-resident representation to tape-

resident representation.

• Create horizontal and (perhaps) vertical partitions.

• Multiple sort orders.

• Allocate to tapes.

Query
• Input:

– List of tape partitions to access.

– Executable for processing the data.

– Hash function.

• Execution:
– Start the processing executables.

– Pick a schedule for accessing tape partitions.

– Use the hash function to route tuples from tape to executable.

Scheduler

drives tape reader hash

Data processing
executables

Access Methods
• Single pass, no correlated accesses.

• Single pass, correlated accesses
– e.g., join a partitioned table.

• Multiple pass

• Joins to disk resident data done at processing executables.

• Build queries out of basic access methods.

Test Implementation
• Large Unix database server

• Robotic storage library with four DLT4000 tape drives.

• Network monitoring data

• Ingest step :
– Extract a 60 Gbyte table from the database, reformat it.

– “Stripe” it across 3 tapes (stripe unit is 500 Mbytes).

• Query
– Complex aggregation query

• groups are defined by tuple sequences.

– Re-use a query written for disk-resident data.

– Proper handling of sequences that span horizontal partitions.

– Obtained 5.2 Mbyte/sec processing rate (maximum is 5.7 Mbyte/sec)

Related Research

• Tertiary storage system performance characterization

• Indexing tape-resident detail data

• Query languages

Performance Characterization

• Query optimization requires precise information about
device performance.
– Layout, scheduling, indexing.

• Precise data on tertiary storage system component
performance is lacking
– Disk drives relatively well understood.

– Wide variety of tape drives, robotic storage libraries.

– Many quirks.

• Related paper in this conference.

Indexing detail data

• Motivation : look up calls made to/from a phone number
– Required for law enforcement

– Terabytes of small records

– 1 per billion selectivity, or less.

• Dense indices do not scale.
– 10% of 10 terabytes is 1 terabyte.

– In this case, index size is equal to data size.

• Coarse indices
– Indicate regions on tape where a record will exist.

• Short seeks are slow

– Aggressive use of compressed bitmaps.

– 20 to 1 index size reduction, or greater.

• See Coarse Indices for a Tape-based Data Warehouse,
Int’l Conf. on Data Engineering 1998, pg. 231-240

Query Languages

• Conventional DBMSs rely on joins.
– Complex aggregation queries frequently involve a self-join.

• Computing tape-to-tape joins is prohibitively expensive
– Load part of one table into memory, scan the other table.

– Many passes, the number of passes increases with table size.

• Most complex aggregation queries require only 1 pass
– I.e., hand-written query plans make 1 pass.

– More complex queries can require another pass.

• Multi-feature extension to SQL
– Chatziantoniou and Ross

– Join-free query plans that use long sequential scans.

• Optimize for tape-resident data
– Reduce the number of passes over the data, often to 1 pass.

– Reduce memory usage.

Conclusions
• Tape-resident decision support data warehouses are

desirable.
– Existing practice is to export the tail of the detail data from the

database.

– Difficulty of access discourages use.

• Tape-resident decision support data warehouses are
feasible.
– Restrict the universe of queries to those that can be answered

efficiently.

– This set of queries covers a surprisingly large class of interesting
queries.

• Work on efficient access.
– Ensure high-throughput sequential access.

– Get the most out of sequential access.

